1.2 Factors influencing chemical profile

1. Species (Genetics)

  • Different Aquilaria species produce distinct sesquiterpene and chromone profiles, which define aroma quality.
  • Examples:
    • A. malaccensis → Rich in α-guaiene, agarofurans, and 2-(2-phenylethyl)chromones; highly prized in Middle Eastern markets.
    • A. sinensis → Slightly lighter aroma; higher proportion of eudesmanes.
    • A. crassna → Stronger balsamic notes, variable chromone content.
  • Genetic variation also affects resin yield and response to microbial infection.

Key point: Species choice directly determines the baseline aromatic composition.

2. Soil Type and Nutrients

  • Soil pH, texture, organic matter, and nutrient content influence tree health and resin formation.
  • Nutrient impacts:
    • Nitrogen (N): Promotes growth but excessive N may dilute resin concentration.
    • Phosphorus (P) and Potassium (K): Support resin biosynthesis and tree defense mechanisms.
    • Micronutrients (Mn, Zn, Fe): Act as enzyme cofactors in terpenoid and chromone biosynthesis.
  • Soil texture and drainage: Poor drainage may stress trees, sometimes enhancing resin formation as a defense response.

Key point: Soil affects resin quantity, quality, and sesquiterpene-chromone ratios.

3. Tree Age

  • Resin accumulation and chemical complexity increase with tree age, but the relationship is not strictly linear.
  • Observations:
    • Young trees (<5 years) → Minimal resin; low sesquiterpene and chromone content.
    • Mature trees (8–15 years) → Optimal balance of sesquiterpenes and chromones.
    • Very old trees (>20 years) → High resin yield but some volatiles may oxidize, altering fragrance.
  • Practical implication: Most commercial agarwood is harvested from trees 8–15 years old, balancing yield and aroma quality.

Key point: Age determines resin abundance, complexity, and aromatic profile.

4. Induction Method

Agarwood is formed as a defense response, so the method of induction strongly influences resin chemistry.

Types of induction:

  1. Natural infection / wounding
    • Fungal infection (e.g., FusariumLasiodiplodia spp.)
    • Slow accumulation of high-quality, complex resin
    • Variable yield and patchy distribution
  2. Artificial inoculation
    • Fungal inoculation via drilling or implanting mycelium
    • Produces consistent sesquiterpene and chromone levels
    • Faster formation than natural infection
  3. Chemical induction
    • Phytohormones or chemical elicitors stimulate defense pathways
    • May favor certain sesquiterpene or chromone classes over others
  4. Mechanical wounding
    • Cuts, burns, or nails
    • Induces resin primarily around wound site; often lower chromone content

Key point: Induction method affects resin distribution, chemical composition, and overall aroma quality.

Summary Table: Factors vs Chemical Profile

FactorInfluence on SesquiterpenesInfluence on ChromonesInfluence on AromaticsNotes
SpeciesDetermines types & abundanceDetermines chromone variantsMinor effectBaseline genetic signature
Soil & NutrientsAffects enzyme activity & terpene synthesisModulates chromone accumulationMinor effectStressful soils can enhance resin
Tree AgeOlder trees → higher sesquiterpene levelsChromones accumulate over timeAromatics more complexOptimal harvest: 8–15 years
Induction MethodType & intensity dictate sesquiterpene patternsStrongly affects chromone profileCan increase volatile aromaticsChoice of method balances yield & quality